热卖商品
新闻详情
Chemical genetic approach using β-rubromycin reveals that a...
来自 :
发布时间:2025-04-26
Chemical genetic approach using 尾-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans AbstractTo characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI鈥揗S, 1H-NMR, and 13C-NMR identified 尾-rubromycin as the inhibitor of cyst germination (IC50鈥?鈥?9.8聽渭g/L); 尾-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that 尾-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that 尾-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes. IntroductionOomycetes, which are classified as Stramenopiles, include many economically important eukaryotic plant pathogens. In particular, species in the genera Phytophthora and Pythium are among the most destructive pathogens, affecting crops, shrubs, and trees on a global scale1. For example, Phytophthora cinnamomi has a very broad host range, with approximately 5000 susceptible species identified2. Pythium aphanidermatum also has a wide host range, causing damping off, especially in vegetable crops3. Other species have more narrow host ranges, such as the historically and economically important Phytophthora infestans which infects Solanaceae species and causes late blight of potato and tomato. One study estimates the annual cost of potato late blight at $10 billion dollars, with chemical control representing 10 to 20% of the total cost of production4. Various chemical treatments have been developed to control plant diseases caused by oomycetes5. However, the emergence of strains resistant to anti-oomycete agents is problematic6. Consequently, new chemicals with different modes of action must be developed to control oomycete diseases. To accelerate the development of new anti-oomycete agents, the molecular mechanisms controlling oomycete morphological development and plant infection should be elucidated.Phytophthora infestans produces sporangia, which undergo temperature-induced morphological changes. For example, placing sporangia in warm water (e.g., 鈥?0聽掳C) for more than 1聽h induces direct germination. In contrast, placing sporangia in cool water (e.g., 鈥?2聽掳C) for more than 1聽h stimulates cytoplasmic cleavage and the release of six or more biflagellated zoospores7. The resulting zoospores swim through the water, and then form walled cysts on a plant surface, losing their flagella. The cysts germinate to form appressoria that breach the host epidermis. Therefore, the asexual life cycle is important for most natural infections8.Zoospore release is a rapid event that occurs in response to a complex calcium signaling pathway9,10. Tani et al. suggested that exposure to cold conditions increases membrane rigidity in sporangia, which activates calcium signaling pathways that drive zoosporogenesis and the transcription of cold-responsive genes7. Major transcriptional changes occur during each stage of spore development and germination11. Actinomycin D and cycloheximide do not block zoospore release but do block cyst germination, implying that new protein synthesis is required for infection12. However, details regarding the molecular mechanisms underlying these developmental transitions remain unclear.Here we describe the use of a chemical genetic method to study morphological development. We first screened actinomycetes for chemicals that inhibit development since actinomycetes are known as prolific producers of natural products with a wide range of biological activities13. This identified 尾-rubromycin as an inhibitor of Ph. infestans cyst germination and hyphal elongation. 尾-rubromycin was also found to inhibit cyst and oospore germination in Py. aphanidermatum. We also discovered that a RIO kinase-like gene of Ph. infestans, PITG_04584, was up-regulated by 尾-rubromycin, and used gene silencing to show that the kinase is involved in multiple development stages.ResultsScreening for actinomycetes producing inhibitors of Ph. infestans cyst germinationActinomycetes in soil samples from Japan were isolated on modified humic acid-vitamin (HVG) medium. Compounds from the approximately 700 isolated microorganisms were then screened for their abilities to inhibit zoospore release, cyst formation, and cyst germination in Ph. infestans. The microorganisms were grown in liquid culture medium A at 30聽掳C for 5 d with shaking. Samples comprising 50% acetone (final concentration) were prepared by incubating the culture broth with an equal amount of acetone at 4聽掳C overnight. After centrifugation, the cell-free extracts were subjected to the assay. The samples were added to 1鈥壝椻€?03 Ph. infestans sporangia, incubated at 10聽掳C for 18聽h, and examined with a stereo microscope. While many of the approximately 700 test samples inhibited zoospore release and cyst formation, two samples inhibited cyst germination, but no effect was observed on zoospore release and cyst formation. The sequential dilution of two samples confirmed that only one sample, no. 750, reproducibly inhibited cyst germination in a dose-dependent manner (Supplementary Fig. S1). We then focused on the no. 750 sample for further analysis.The 16S rRNA gene sequence of the no. 750 strain was identical to that of Streptomyces massasporeus strain NBRC 12796. Thus, our isolate was designated as Streptomyces sp. no. 750.Purification and identification of the inhibitor of Ph. infestans cyst germinationTo produce large amounts of the active compound from Streptomyces sp. no. 750, we optimized the culture conditions by changing the nitrogen and carbon sources (medium A to F, Supplementary Table S1) and the culture duration. Because the 50% acetone extracts from the 5-day cultures in medium E consistently inhibited cyst germination (data not shown), we grew Streptomyces sp. no. 750 in culture medium E for 5 d. The only difference between media A and E is the presence of the Pridham-Godleave solution in medium E, implying that trace elements were critical for enhancing the production of the cyst germination inhibitor.The purification was started from 10.76聽g of dried crude extract, which was extracted with ethyl acetate from a 76.4-L culture supernatant followed by evaporation. The ethyl acetate fraction was chromatographed on Wakogel C-200 and Inertsil ODS-3 columns. The germination-inhibiting sample eluted as a single peak with a retention time of 15.380聽min, and was dried to yield 2.9聽mg of red powder (sample A) (Fig.聽1A, B).Figure 1Activity and LC鈥揗S data of purified sample A. (A) HPLC profile indicating that the bioactive fraction was at 15.38聽min. (B) Effect of fractions on Ph. infestans cyst germination, showing that the peak from panel A contains the inhibitor. The cyst germination rate under the control condition was set as 100%. (C) LC鈥揗S data of Sample A purified from the isolated strain, Streptomyces sp. no. 750 (m/z鈥?鈥?鈥?000).Full size imageThe ESI鈥揗S data for sample A revealed a molecular ion [M鈥?鈥塇]+ at m/z 537 (Fig.聽1C). A search of the Streptomyces natural product database StreptomeDB2.014 uncovered 11 compounds with a mass range of 535鈥?37聽Da. Of these, only collinomycin from Streptomyces collinus was described as being red15. A comparison of the 16S rRNA gene sequence of the strains producing the 11 selected compounds revealed that the S. collinus sequence was the most similar to that of Streptomyces sp. no. 750 (98% identity). Therefore, we identified collinomycin as a candidate for sample A.Additional data mining indicated that collinomycin had been renamed 伪-rubromycin (536.1聽Da). To determine if our bioactive compound was 伪-rubromycin as opposed to the related compound 尾-rubromycin (536.4聽Da), we compared 1H-NMR and 13C-NMR data of sample A versus 伪- and 尾-rubromycin standards. The rubromycins are distinguished by diverse oxidation states at C-3鈥? C-3, C-4 and the functionality at C-716 (Supplementary Fig. S2). The sample A and 尾-rubromycin spectra were highly similar. The spectroscopic data for sample A were as follows: 13C-NMR (100聽MHz) 未: 40.134 (C-3鈥?, 29.605 (C-3), 22.162 (C-4), 52.928 (7-CO2CH3), 56.460 (5鈥?OCH3), and 57.118 (7鈥?OCH3). The spectroscopic data for 尾-rubromycin were as follows: 13C-NMR (100聽MHz) 未: 40.134 (C-3鈥?, 29.597 (C-3), 22.154 (C-4), 52.997 (7-CO2CH3), 56.452 (5鈥?OCH3), and 57.110 (7鈥?OCH3). Additionally, only sample A and 尾-rubromycin contained an 5,6-bisbenzannulated spiroketal, which distinguishes 尾-rubromycin from 伪-rubromycin16. Sample A also included three methoxy groups, which are signatures of 尾-rubromycin and are also used to differentiate the rubromycins. The 1H-NMR data for sample A and 尾-rubromycin were also highly similar (data not shown), although there were some differences in the 1H-NMR data as well as in the 13C-NMR between sample A and 尾-rubromycin due to contaminants. Furthermore, the UV/VIS spectral data indicated that the absorption maxima of sample A and 尾-rubromycin were 238聽nm and 312聽nm, respectively (Supplementary Fig. S3). These data suggested that sample A contained 尾-rubromycin and its derivatives.To investigate the effects of commercially available rubromycins on Ph. infestans cyst germination, we purchased 纬-rubromycin (molecular weight: 522.4) and compared its ability to inhibit cyst germination with purchased 尾-rubromycin, while 伪-rubromycin was not available commercially. Ph. infestans sporangia (1鈥壝椻€?03 sporangia/40 渭L) were mixed with various concentrations of the rubromycins in water. As mentioned earlier, the rubromycins did not prevent the release of zoospores. However, as illustrated in Fig.聽2A, while germinated cysts were seen in the control no germination was observed in the presence of 尾-Rubromycin. A quantitative analysis by microscopy revealed that 尾-rubromycin inhibited cyst germination (IC50鈥?鈥?9.8聽渭g/L) more effectively (Fig.聽2B) than 纬-rubromycin (IC50鈥?鈥?8.5聽渭g/L), respectively (Fig.聽2C). The difference between 尾-rubromycin and 纬-rubromycin is the presence of a naphthazarin moiety in 尾-rubromycin, implying this group affects its effectiveness as a cyst germination inhibitor16. Addition of 尾-rubromycin to cysts also inhibited cyst germination (IC50鈥?鈥?53.5聽渭g/L) (Fig.聽2D). Zoospore release, cyst formation, and appressorium formation were unaffected by any of the compounds.Figure 2Effect of 尾-rubromycin and 纬-rubromycin on Ph. infestans cyst germination or direct germination from sporangia. The indicated amount of each compound was added to sporangia or cysts, which were incubated at 10聽掳C for zoosporogenesis or 18聽掳C for direct germination for indicated time period and then scored (A鈥?b>D). (A) Representative images of cysts with or without 1.0聽mg/L 尾-rubromycin, showing the inhibition of cyst germination (at 6-h post stimulation of cyst germination). Bar is 50聽渭m. The indicated amount of 尾-rubromycin or 纬-rubromycin was added to sporangia (B and C). Cyst germination was scored at 6-h after addition of a final concentration of 2.5聽mM Ca(NO3)2 to zoospores. Comparison of the cyst germination rates in the presence of 尾-rubromycin (B) and 纬-rubromycin (C). (D) The indicated amount of 尾-rubromycin was added to cysts just after adding a final concentration of 2.5聽mM Ca(NO3)2 to zoospores, and which were incubated for 6聽h at 18聽掳C and then cyst gemination was scored. (E) Effect of 尾-rubromycin on germination from sporangia. The indicated amount of 尾-rubromycin was added to sporangia and kept at 25聽掳C to assess the direct germination rate after 96聽h. (F) Effect of 尾-rubromycin on hyphal elongation at 25聽掳C. The sporangium suspension was kept at 25聽掳C with or without 1.0聽mg/L 尾-rubromycin. The length of hyphae was measured under a microscope at indicated time points. Letters indicate significant difference between groups (p鈥?lt;鈥?.05, one-way ANOVA). Each experiment was performed three times which contained three biological repeats.Full size imageWe next investigated whether 尾-rubromycin inhibits the direct germination of sporangia, which occurs at warmer conditions (e.g. 25聽掳C) than those used to produce zoospores. Suspensions comprising 1鈥壝椻€?03 sporangia were treated with various 尾-rubromycin concentrations and then incubated at 25聽掳C for 96聽h. 尾-Rubromycin did not inhibit the germination of sporangia, even at 19.2聽mg/L (Fig.聽2E). However, hyphal elongation delayed in the presence of 1.0聽mg/L 尾-rubromycin at both 4 and 7-h after sporangia were kept at 25聽掳C (Fig.聽2F). The delayed hyphal elongation was more obvious at 60聽h (Supplementary Fig. S4). Thus, 尾-rubromycin attenuated hyphal elongation, but not sporangial germination.尾-Rubromycin inhibited Ph. infestans infection of tomato leavesWe investigated whether the inhibition of cyst germination and hyphal elongation was correlated with decreased pathogenicity. To test the effect of the inhibitor on infection caused by zoospores, sporangia (1鈥壝椻€?04 per mL) were incubated with or without 1.0聽mg/L 尾-rubromycin at 10聽掳C for 2聽h. More than 80% of the sporangia released zoospores under both conditions. Ten 渭l of zoospores (1鈥壝椻€?03), purified from sporangia by passage through 15-渭m pore mesh, were then added to each tomato leaflet. We observed that Ph. infestans colonized tomato leaves under the control condition, based on the presence of abundant surface hyphae and sporangia after 9聽days at 18聽掳C (Fig.聽3A). In contrast, no evidence of pathogen growth was observed when 尾-rubromycin had been added. We next investigated the effect of 尾-rubromycin on infection by directly germinated sporangia. Sporangia in the presence or absence of 1.0聽mg/L 尾-rubromycin were incubated at 25聽掳C for 8聽h to stimulate germination, after which time a 10-渭L aliquot of the suspension was added to tomato leaflets. Hyphal growth of Ph. infestans was not observed in the presence of 尾-rubromycin (Fig.聽3B). This implies that treating tomato tissue with 尾-rubromycin would also attenuate infection, although due to the cost of the compound this was not tested directly.Figure 3Effect of 尾-rubromycin on infection and in planta growth of Ph. infestans. (A) Tomato leaflets inoculated with zoospores with or without 1.0聽mg/L 尾-rubromycin. The image was taken after 9聽days. (B) Leaflets infected with a sporangium suspension with or without 1.0聽mg/L 尾-rubromycin that was incubated at 25聽掳C for 8聽h to stimulate direct germination. The image was taken after 9聽days. Representative images for three biological replicates are presented.Full size image尾-Rubromycin inhibited germination of cysts and oospores in Py. aphanidermatum We next assessed whether 尾-rubromycin can inhibit cyst germination in Ph. aphanidermatum, causing Pythium damping-off. Since Py. aphanidermatum infections frequently involve its sexual cycle, we also examined whether 尾-rubromycin can inhibit germination of sexual spores (oospores) and its infection through oospores. 尾-Rubromycin significantly inhibited cyst germination (IC50鈥?鈥?21.2聽渭g/L; Fig.聽4A, B) as well as oospore germination (IC50鈥?鈥?2.2聽渭g/L; Fig.聽4C, D). Moreover, infection of Chinese cabbage was also inhibited by 1.0聽mg/L 尾-rubromycin (Fig.聽4E). These results demonstrated that 尾-rubromycin can be used as a reagent to study the mechanisms underlying morphological development in Phytophthora and Pythium species.Figure 4Effect of 尾-rubromycin on germination and in planta growth of Py. aphanidermatum. (A) Effect of 1.0聽mg/L 尾-rubromycin on cyst germination. Representative data after 10聽h at 18聽掳C are provided. Bar is 50聽渭M. (B) IC50 of 尾-rubromycin for cyst germination at 10聽h after cyst germination was stimulated. Each experiment was performed three times which contained three biological repeats. (C) Effect of 1.0聽mg/L 尾-rubromycin on oospore germination after 24聽h. Representative data are provided. Bar is 50聽渭M. (D) IC50 of 尾-rubromycin for oospore germination after 24聽h. Each experiment was performed three times which contained three biological repeats. (E) Effect of 1.0聽mg/L 尾-rubromycin on in planta growth. Oospore (1.0鈥壝椻€?03) suspensions with or without 1.0聽mg/L 尾-rubromycin were added to wounded Chinese cabbage leaves (four straight cuts per leaf). Representative images for three biological replicates at 4聽days post-inoculation are presented.Full size imageChemical genetic analysis to identify genes involved in morphological development in Ph. infestans To obtain insight into the effect of 尾-rubromycin, we assessed gene expression profiles using RNA from cysts (0聽h) and germinated cysts (3 and 6聽h) treated with or without 1.0聽mg/L 尾-rubromycin, respectively. Candidate genes of interest were identified by a preliminary RNA-seq experiment, and then validated by qRT-PCR, the latter involving three biological replicates. Since transcriptional profiles of many genes were modified in the presence of 尾-rubromycin, we first focused on checking the expression of transcription factor or kinase genes which were found in only oomycetes. One group of genes proved to show the most upregulated expression among putative transcription and kinase genes in qRT-PCR encoded two atypical protein kinases called RIO kinases. The addition of 尾-rubromycin caused these to be overexpressed by 60-fold (PITG_04584) and 12-fold (PITG_04591) in the 6-h germinated cysts (Fig.聽5A). Ph. infestans possesses four RIO kinase-like genes (Fig.聽5B). PITG_16813 possesses the STGKEA and IDxxQ signature sequences of RIO1 kinases, while PITG_03672 contains the GxGKES and IDFPQ signatures of the RIO2 group17. PITG_04591 possesses the SGKEA sequence which is one of two signature sequences of RIOB, SGKEA and IDxPQ17. The catalytic domain of the PITG_04584 is similar to those of RIO kinases although the above signature sequences were not conserved. A comparison of amino acid sequences using the FASTA algorithm revealed that PITG_04584 and PITG_04591 orthologs were found only in the genomes of oomycetes because their orthologs in plants and animals showed relatively higher e-value (approximately E鈭?0鈥墌鈥塃鈭?5) and belonged to the clade of RIO2 and PITG_03672. In contrast PITG_16813 and PITG_03672 orthologs were found in a wide array of plants and other organisms with relatively lower e-value ( 鈥塃鈭?00) (Fig.聽5B). Human RIOK1 (NP_001335123), yeast RIO1 (NP_014762), human RIOK2 (NP_029650647), and yeast RIO2 (XP_029650647), which were identified as non-ribosomal factors necessary for late 18 S rRNA processing18,19,20, were also included in these clades. Therefore, we first analyzed the function of an oomycete-specific gene, PITG_04584.Figure 5Expression and phylogenetic analyses of RIO kinase-like genes. (A) qRT-PCR of PITG_04584 and PITG_04591 expression in Ph. infestans with or without 1.0聽mg/L 尾-rubromycin. Fold expression corresponds to the ratio of the mean expression levels of their genes in the presence of 1.0聽mg/L 尾-rubromycin divided by those without 尾-rubromycin. The relative transcription levels are the means of at least three independent experiments, and the error bars indicate standard deviations. *p鈥?lt;鈥?.05, Student鈥檚 t-test. (B) The phylogenetic relationship of RIO kinase orthologs. Built is a consensus neighbor-joining tree based on sequences orthologous to PITG_04584, PITG_04591, PITG_03672, and PITG_16813, based on an alignment performed using ClustalW. The individual nodes of resulting trees was examined with 1000 bootstrap replicates; only values below 1000 are shown.Full size imagePITG_04584 is involved in multiple steps of morphological development stimulated under cooler temperaturesGene overexpression and homology-based gene silencing were used to help assess the role of the PITG_04584 gene on morphological development. PITG_04584 was expressed 60 times higher compared to empty vector control (C2, C4, and C14) in transformant OE3, 10 times in OE14, and 12 times in OE32, and reduced to one-sixth of the controls in silenced transformant S1, one-third in S10, and one-third in S14 (Fig.聽6B). Since neighbors within 500 nt of the target gene are often cosilenced21, we investigated the expression of PITG_04583, which resides within 540 nt of PITG_04584; there was no predicted gene on the other side of PITG_04584 within 40聽kb. Since the expression of PITG_04583 in all transformants was not significantly different from wild-type (Supplementary Fig. S5), we investigated phenotypes resulting from silencing and over-expression. Hyphal elongation and sporangium formation on rye agar media and zoospore release at 10聽掳C were not affected (Supplementary Fig. S6A鈥揅). However, the average diameter of zoospores was 16鈥?9聽渭m in the three silenced mutants compared to 10鈥?2聽渭m in the three control and overexpressing strains; this represents a significant difference (p鈥?lt;鈥?.01) (Fig.聽6C, D). Although cyst formation rates were almost the same in each strain, cyst germination rates were significantly reduced in three overexpressing mutants to two-thirds that of the three control and silenced strains (p鈥?lt;鈥?.05) (Fig.聽6E). It should be noted that the reduction of cyst germination in the overexpressing strains is consistent with the inhibitory effect of 尾-rubromycin on that developmental transition and the increased expression of PITG_04584 in the presence of 尾-rubromycin. In addition, appressorium formation was significantly reduced in both the overexpressing and silenced mutants (p鈥?lt;鈥?.05) (Fig.聽6G). Furthermore, shape of appressoria differed in both the silenced and over-expressing strains. While the height/width ratio of wild-type appressorium is 鈥?.5, appressoria were more elongated in the two classes of transformants (Fig.聽6F, H). Despite the defects in formation of normal zoospores in the silenced strains, in cyst germination in the overexpressing mutants, and in appressorium formation in both the overexpressing and silenced strains, each successfully infected tomato leaves (data not shown).Figure 6Genetic analysis of PITG_04584 function. (A) Plasmids used for silencing and overexpression. The maps are presented in linearized form. Hairpin constructs were expressed behind the constitutive HSP70 promoter (PHSP70), using sense and antisense PITG_04584 open reading frames (arrows) separated by the intron of the Ste20-like gene (I). The PITG_04584 gene was also overexpressed under the constitutive HSP70 promoter. The terminator of HSP70 (THSP70) was used. Each plasmid also contains a nptII marker for selection. (B) qRT-PCR analysis of PITG_04584 in the transformants. Expression levels were normalized to a constitutive gene encoding ribosomal protein S3A. The relative transcript levels shown are the means of at least three independent experiments, and the error bars indicate the standard deviations. Letters indicate significant differences between groups (p鈥?lt;鈥?.05, one-way ANOVA). (C) Representative pictures of zoospores in the control (C2) and silenced strains (S1). (D) The diameter of zoospores were measured from three different areas under the microscope (n鈥?gt;鈥?0 in each). Results from three independent experiments are depicted as the mean鈥壜扁€塻.d. Letters indicate significant differences between groups (p鈥?lt;鈥?.05, one-way ANOVA followed by Tukey鈥檚 post-test). (E) Cyst germination rates, calculated by dividing the number of germinated cysts by that of the sum of ungerminated and germinated cysts. Letters indicate significant differences between groups (p鈥?lt;鈥?.05, one-way ANOVA). (F) Representative pictures of appressoria in control C2, overexpressing strain OE3, and silenced mutant S1. (G) Fraction of germinated cysts producing appressoria. (H) Fraction of appressoria showing an oval shape, defined as those having a height/width ratio 鈥?.5. Results from three independent experiments are depicted as the mean鈥壜扁€塻.d. Different letters indicate significant differences between groups (p鈥?lt;鈥?.05, one-way ANOVA). Each experiment was performed three times which contained three biological repeats.Full size imageDiscussionIn this study, we first identified 尾-rubromycin as a Ph. infestans cyst germination inhibitor by screening compounds produced by Streptomyces isolated from soil. 尾-Rubromycin inhibited Ph. infestans cyst germination and hyphal elongation from sporangia, while not affecting zoospore release, cyst formation, or appressorium formation. Furthermore, the compound inhibited the germination of Py. aphanidermatum cysts and oospores. Chemical genetic analyses using 尾-rubromycin identified a RIO kinase-like gene, PITG_04584, as a critical contributor to zoosporogenesis, cyst germination, and the formation of appressoria in Ph. infestans.The effects of rubromycins on viruses, bacteria, and human cancer cells have been thoroughly investigated16. Previous studies showed that 尾-rubromycin, 纬-rubromycin, and 3鈥?hydroxy-尾-rubromycin inhibit the growth of Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. In eukaryotes, rubromycins are inhibitory toward viral reverse transcriptase and human telomerase22. Comparative analyses of rubromycins revealed that all examined moieties (i.e., quinone, spiroketal, and isocoumarin) are required for telomerase inhibition23. These results are consistent with our observations indicating that the naphthazarin moiety is critical for the inhibition of Ph. infestans cyst germination (Fig.聽2).In humans, a previous study proved that 尾-rubromycin competitively interacts with the telomerase substrate primer, TS-A (Ki鈥?鈥?.74聽渭M), enabling 尾-rubromycin to interact with the telomerase RNA22. Although 尾-rubromycin showed nonspecific cytotoxicities, it inhibited the proliferation of both K-562 and Hela cells with IC50 values of 19.5聽渭M and 22.7聽渭M, respectively21. While oomycetes do contain orthologs of human telomerase, it is possible that 尾-rubromycin affects other targets since it had no effect on vegetative growth on rye medium. Also, the IC50 for cyst germination (37聽nM) was much lower than that observed for the inhibition of human cells.Calcium signaling plays a central role in zoosporogenesis10,24. One study revealed that approximately two-thirds of the genes activated during zoosporogenesis rely on calcium signaling11. However, the molecular mechanisms underlying development remain relatively unknown in oomycetes. A few factors are reportedly involved in cyst germination. For example, the silencing of a gene encoding a dynamin-related protein (PsVPS1) was reported to result in abnormal cyst germination and inhibited infections of soybean by Phytophthora sojae25. In Phytophthora capsici, leucine-rich repeat (LRR) domain-containing kinases contribute to sporangium formation, zoospore release, cyst germination, and infection of Nicotiana benthamiana26. Our preliminary analysis of transcription in the presence of 尾-rubromycin during cyst germination indicated that the expression levels of genes encoding dynamin-like proteins (PITG_08836, 08837, and 08838) and an LRR receptor kinase gene (PITG_17495) were unaffected by 尾-rubromycin (data not shown).A striking finding of our study is that RIO kinase-like gene, PITG_04584, was required for normal zoospore development. RIO kinases, which possess limited sequence homology with canonical eukaryotic protein kinases, include four subfamilies: RIO1, RIO2, RIO3, and RIOB17,27. RIOB is found in some eubacteria where its function remains to be determined27. In contrast, RIO1 and RIO2 are highly conserved from archaea to human and have been assigned functions based largely on studies of human and yeast. Both kinases in yeast and human are involved in the late stages of 18 S rRNA processing18,19,20. RIO1 in yeast is also involved in entry into S phase and exit from mitosis28. RIO3 is present only in metazoans, where it is required for normal processing of 21 S pre-rRNA29 and regulation of the NF-魏B signaling pathway through its interaction with caspase-1030. Based on phylogenetic analysis PITG_16813 and PITG_03672 might play roles for ribosomal RNA processing. It has been revealed that number of RIO kinase paralogs vary between taxa and their functions may vary. Baker et al. proposed that paralog interference is a common constraint on the evolution of gene duplicates including their resolution, which can generate additional regulatory complexity31. The PITG_04584 group of RIO kinases, which occurs throughout the oomycete group, may therefore have evolved to have a novel function in oomycetes following an ancient gene duplication event.The inhibitory effect of 尾-rubromycin on cyst germination was consistent with the expression profile of PITG_04584 and the phenotypes of its mutants, although we have not identified the target of 尾-rubromycin. So far, ATP-competitive inhibitors such as toyocamycin and a series of pyridine caffeic acid benzyl amides are known as inhibitors of RIO kinases32,33. RIO kinases contain a canonical eukaryotic protein structure, but also display several unusual structural features; implying that the identification of the target proteins of PITG_04584 and the inhibitor of PITG_04584 may contribute to establish new methods to suppress diseases caused by oomycetes.Materials and methodsManipulation of Ph. infestans and Py. aphanidermatum Phytophthora infestans isolate 1306 is an A1 strain that was isolated from tomato in California, USA. Importation of this isolate was approved by the Ministry of Agriculture, Forestry, and Fisheries of Japan. The culture was maintained at 18聽掳C on rye agar34. Sporangia were released from 10-day cultures by adding water, rubbing the surface of the medium with a glass rod, and eliminating hyphal fragments by passage through 50-渭m nylon mesh. The collected sporangia (2鈥壝椻€?04 per ml) were either incubated at 10聽掳C for zoosporogenesis or at 25聽掳C for direct germination. Zoospores were obtained and purified by incubating the sporangia for 120聽min followed by passage through 15-渭m mesh. Cysts were obtained by adding Ca(NO3)2 to 2.5聽mM followed by incubation for 30聽min at 18聽掳C. Germinating cysts were obtained by adding one fiftieth volume of clarified rye media to the cyst suspension followed by incubation for 6聽h at 18聽掳C. Appressorium formation was scored 8-h after addition of the clarified rye media to the cysts. Aliquots were removed at the times noted in Results and viewed under a microscope (Olympus CKX41 inverted microscope, Tokyo, Japan) to assess morphological change, basing measurements on a minimum of 100 cells. Each experiment was performed three times which contained three biological repeats. More than 80% of sporangia typically released zoospores, more than 80% of cysts germinated, and more than 80% of germinated cysts formed appressoria under a control condition. For RNA analysis, cysts and germinating cysts were pelleted at 1000鈥壝椻€?i>g for 5聽min at 4聽掳C, and then frozen in liquid nitrogen.Py. aphanidermatum isolate OPU85435 was maintained on V8 juice agar at 25聽掳C36. Zoospore release and cyst formation in Py. aphanidermatum were stimulated as described previously37. We collected Py. aphanidermatum oospores from 5-d mycelia as described38, after which the oospore suspensions were adjusted to 1鈥壝椻€?03 oospores/mL.Screening microorganisms for compounds affecting cyst germinationActinomycetes were isolated from soil samples using modified HVG agar medium as described39. The HVG was modified by addition of Pridham-Godleave solution, which contains trace elements and 1.5% (w/v) gellan gum (Supplementary Table S1). Isolated microorganisms were cultured on maltose-Bennett鈥檚 agar. An acetone extract was prepared from cultures grown for 5-d in liquid medium A at 30聽掳C (Supplementary Table S1) by adding an equal volume of acetone followed by mixing. For bioassays, 20-渭L aliquots were mixed with 1鈥壝椻€?03 Ph. infestans sporangia in total 70 渭L (14.2% acetone solution), incubated at 10聽掳C for 18聽h, and examined using an inverted microscope (Olympus, Tokyo, Japan). As a control, we confirmed that 15% acetone had no effect on morphological change in Ph. infestans.Isolated microorganisms were identified based on 16S rRNA analysis. This involved polymerase chain reaction (using primers 5鈥?AGAGTTTGATCCTGGCTCAG and 5鈥?AAGGAGGTGATCCAGCCGCA40) followed by Sanger sequencing.Optimization of fermentation conditionsIsolates strains were initially cultured in medium A at 30聽掳C for 2 d. Aliquots were then transferred to 200聽mL of the six media described in Supplementary Table S1 and incubated at 30聽掳C for 6 d. EtOAc extracts were prepared daily and assayed for their abilities to inhibit cyst germination.Isolation of the cyst germination inhibitorStreptomyces sp. no. 750 was cultured in liquid medium E (Supplementary Table S1) at 30聽掳C for 5聽days. The supernatant (76.4 L) was extracted twice with EtOAc followed by evaporation. The crude extract (10.76聽g) was added to a Wakogel C-200 column (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) and eluted with a stepwise gradient of EtOAc/MeOH (100:0 to 0:100) to produce two fractions (EtOAc/MeOH, 80:20, 70:30) that yielded 0.77聽g dry material. This was resuspended in MeCN and purified by HPLC with an Inertsil ODS-3 column (GL Sciences, Tokyo, Japan). The gradient elution was as follows: H2O/MeCN (90:10) for 10聽min, H2O/MeCN (from 90:10 to 0:100) for 20聽min, and H2O/MeCN (0:100) for 10聽min. The flow rate was set at 2.0聽mL/min and the eluent was fractionated every 1聽min. The cyst germination inhibitor was detected in the 16th fraction (30聽mg). The bioactive compound was further purified by HPLC with the Inertsil ODS-3 column and an isocratic elution involving 50% MeCN. Only a single peak was detected, which was dried to yield 2.9聽mg of a red powder.Spectroscopic analysis of the purified compound and 尾-rubromycinThe structures of the purified compound (sample A) and 尾-rubromycin (AdipoGen Life Sciences, San Diego, CA) were determined based on 1H- and 13C-NMR. This used DMSO-d6 with a JNM AL-400 NMR spectrometer (JEOL Ltd. Tokyo, Japan). Chemical shifts were determined using the solvent peak (未H 2.49, 未C 39.7) as an internal standard. Molecular mass was determined with the LC鈥揗S 2020 system (Shimadzu).Bioassays using purified sample A and rubromycinsThe sample A and commercially purchased rubromycins, 尾-rubromycin and 纬-rubromycin (AdipoGen Life Sciences), were dissolved in DMSO. Assays of Ph. infestans were conducted as described above using 2 渭L of inhibitor at the concentrations described in Results with 1鈥壝椻€?03 sporangia (in 98 渭L) or 5鈥壝椻€?03 cysts (in 98 渭L). IC50 values for rubromycins were determined based on a linear regression.Assays involving Py. aphanidermatum were performed as follows. An oospore suspension (approximately 1鈥壝椻€?03 in 178 渭L) was mixed with 2 渭L 尾-rubromycin at the amounts indicated in Results and 20 渭L 5% V8 liquid medium. The resulting mixture was incubated at 25聽掳C for 30聽min. We then added Ca(NO3)2 to a final concentration of 2.5聽mM, followed by incubation for 24聽h to stimulate germination. Oospore morphology was examined with a microscope. Approximately 1 cm2 V8 plugs containing Py. aphanidermatum were dipped in 10聽mL sterilized water at room temperature to stimulate zoospore release. The water was refreshed 1聽h later, and zoospore release observed with a microscope. Approximately 104 zoospores were used to assess the effect of 尾-rubromycin on cyst germination. Aliquots were removed at the times noted in Results and viewed under an inverted microscope to assess morphological change, basing measurements on a minimum of 100 cells. Each experiment was performed three times which contained three biological repeats.Infection assaysPlant infection assays were conducted with the leaves of tomato plants (cv. Momotaro) grown for 3鈥?聽weeks at room temperature. Tomato leaflets inoculated with Ph. infestans sporangium or zoospore suspensions were incubated at 18聽掳C for 7鈥?聽days under humid conditions. Infection assays were performed with a 10-渭L aliquot from a 98-渭L sporangium suspension (3鈥?鈥壝椻€?03/mL) and a 98-渭L zoospore suspension (3鈥?鈥壝椻€?03/mL) with or without 2 渭L various concentration of 尾-rubromycin in DMSO. Three droplets were spotted to each leaflet. Three leaflets were used per replicate. Each experiment was performed three times which contained three biological repeats.A second infection assay was completed with Chinese cabbage leaves infected with P. aphanidermatum. Specifically, an oospore suspension was prepared as described above. The oospore suspension (1鈥壝椻€?03 in 198 渭L) supplemented with 2 渭L 尾-rubromycin was used to inoculate Chinese cabbage leaves, which were then incubated at 35聽掳C under humid conditions for 4聽days. Each experiment was performed three times.Transformation of Ph. infestans Transformations were conducted by using the electroporation method and G418 selection41, using circular plasmids p04584S1 and p04584OE1 (shown Fig.聽6A without the nptII marker gene). Plasmids p04584OS1 and p04584OE1 were constructed in pHAM35 by inserting the HSP70 promoter (PHSP70) from pSTORA. In pRIOS1, open reading frames from PITG_04584 in sense and antisense orientations separated by an 85-nt intron from the Ste20-like gene42 were expressed under control of PHSP70. In p04584OE1, the open reading frame from PITG_04584 was inserted into the vector in sense orientation to express the gene under the control of PHSP70. Primers used for plasmid construction are listed in Supplementary Table S2.Quantitative real-time RT-PCRqRT-PCR was performed using SYBR Green detection as described previously43. In brief, primers for qRT-PCR of PITG_04584 (Supplementary Table S2) were designed to amplify the 3鈥?UTR of the target gene. Assays were based on a minimum of three biological replicates using three technical replicates per tissue sample. Control amplifications were performed using no reverse transcriptase, and melt curves confirmed the fidelity of the amplification. Expression levels were calculated using the 螖螖CT method, using a constitutive gene (ribosomal protein S3A, PITG_11766) as a control44.RNA-sequencing analysisThis was performed as described45. In brief, libraries were prepared using the Illumina TruSeq RNA Sample Prep Kit v2 according to standard protocols (Illumina, San Diego, CA, USA). Each RNA sample (1聽渭g) was enriched for mRNA using oligo (dT)-tagged beads. The mean insert size for each library was approximately 280 to 300聽bp. Sequencing was performed in a paired-end 50 base mode on a Miseq system (Illumina). We prepared only one sample for each condition: cysts (time 0), germinated cysts (3 and 6聽h) with or without 1聽mg/mL 尾-rubromycin. The sequences were analyzed using the CLC genomics workbench (CLC Bio, Aarhus, Denmark). Only reads with quality values higher than Q30 were used for mapping.聽These were mapped to Ph. infestans genome data from fungiDB (https://fungidb.org/fungidb/app/search/dataset/AllDatasets/result) to calculate RPKM values. All data generated or analyzed during this study are included in this published article and its Supplementary Information Files. References1.Erwin, D. C. Riveiro, O. K. Phytophthora diseases worldwide. Am. Phytophathol. 562, 66 (1996). Google Scholar聽 2.Hardham, A. R. Blackman, L. M. Phytophthora cinnamomi. Mol. Plant Pathol. 19, 260鈥?85. https://doi.org/10.1111/mpp.12568 (2018).Article聽 PubMed聽Google Scholar聽 3.Halo, B. A., Al-Yahyai, R. A., Maharachchikumbura, S. S. N. Al-Sadi, A. M. Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Sci. Rep. 9, 11255. https://doi.org/10.1038/s41598-019-47736-x (2019).ADS聽 CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 4.Haverkort, A. J., Struik, P. C., Visser, R. G. F. Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res. 52, 249鈥?64. https://doi.org/10.1007/s11540-009-9136-3 (2009).Article聽Google Scholar聽 5.Shattock, R. C. Phytophthora infestans: populations, pathogenicity and phenylamides. Pest. Manag. Sci. 58, 944鈥?50. https://doi.org/10.1002/ps.527 (2002).CAS聽 Article聽 PubMed聽Google Scholar聽 6.Alkher, H. et al. Characterization of Phytophthora infestans populations in Canada during 2012. Plant. Pathol. 37, 305鈥?14 (2015). Google Scholar聽 7.Tani, S. Judelson, H. Activation of zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity. Eukaryot. Cell 5, 745鈥?52. https://doi.org/10.1128/EC.5.4.745-752.2006 (2006).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 8.Duniway, J. M. Role of physical factors in the development of Phytophthora diseases. In Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology. American Phytopathological Society Press, St. Paul, MN, U.S.A., 175鈥?87 (1983).9.Warburton, A. Deacon, J. Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet. Biol. 25, 54鈥?2 (1998).CAS聽 Article聽Google Scholar聽 10.Tani, S., Yatzkan, E. Judelson, H. Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol. Plant Microbe Interact. 17, 330鈥?37. https://doi.org/10.1094/MPMI.2004.17.3.330 (2004).CAS聽 Article聽 PubMed聽Google Scholar聽 11.Ah-Fong, A. M., Kim, K. S. Judelson, H. S. RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genomics 18, 198. https://doi.org/10.1186/s12864-017-3585-x (2017).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 12.Penington, C. J., Iser, J. R., Grant, B. R. Gayler, K. R. Role of RNA and protein synthesis in stimulated germination of zoospores of the pathogenic fungus Phytophthora palmivora. Exp. Mycol. 13, 158鈥?68 (1989).CAS聽 Article聽Google Scholar聽 13.Bibb, M. J. Understanding and manipulating antibiotic production in atinomycetes. Biochem. Soc. Trans. 2013, 1355鈥?364 (2013).Article聽Google Scholar聽 14.Klementz, D. et al. StreptomeDB 2.0鈥擜n extended resource of natural products produced by streptomycetes. Nucleic Acids Res. 44, D509-514. https://doi.org/10.1093/nar/gkv1319 (2016).CAS聽 Article聽 PubMed聽Google Scholar聽 15.Brockmann, H. Renneberg, K. H. Collinomycin, ein gelbes Antibiotikum aus Actinomyceten. Naturwissenschaften 40, 166鈥?67 (1953).ADS聽 CAS聽 Article聽Google Scholar聽 16.Atkinson, D. J. Brimble, M. A. Isolation, biological activity, biosynthesis and synthetic studies towards the rubromycin family of natural products. Nat. Prod. Rep. 32, 811鈥?40. https://doi.org/10.1039/c4np00153b (2015).CAS聽 Article聽 PubMed聽Google Scholar聽 17.LaRonde-LeBlanc, N. Wlodawer, A. A family portrait of the RIO kinases. J. Biol. Chem. 280, 37297鈥?7300. https://doi.org/10.1074/jbc.R500013200 (2005).CAS聽 Article聽 PubMed聽Google Scholar聽 18.Geerlings, T. H., Faber, A. W., Bister, M. D., Vos, J. C. Raue, H. A. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S Pre-rRNA in Saccharomyces cerevisiae. J. Biol. Chem. 278, 22537鈥?2545. https://doi.org/10.1074/jbc.M300759200 (2003).CAS聽 Article聽 PubMed聽Google Scholar聽 19.Widmann, B. et al. The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits. Mol. Biol. Cell 23, 22鈥?5. https://doi.org/10.1091/mbc.e11-07-0639 (2012).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 20.Zemp, I. et al. Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J. Cell Biol. 185, 1167鈥?180. https://doi.org/10.1083/jcb.200904048 (2009).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 21.Vu, A. L., Leesutthiphonchai, W., Ah-Fong, A. M. V. Judelson, H. S. Defining transgene insertion sites and off-target effects of homology-based gene silencing informs the application of functional genomics tools in Phytophthora infestans. Mol. Plant Microbe Interact. 32, 915鈥?27. https://doi.org/10.1094/MPMI-09-18-0265-TA (2019).CAS聽 Article聽 PubMed聽Google Scholar聽 22.Ueno, T. et al. Inhibition of human telomerase by rubromycins: Implication of spiroketal system of the compounds as an active moiety. Biochemistry 39, 5995鈥?002 (2000).CAS聽 Article聽Google Scholar聽 23.Yuen, T.-Y. et al. Telomerase inhibition studies of novel spiroketal-containing rubromycin derivatives. Aust. J. Chem. 66, 530鈥?33. https://doi.org/10.1071/ch13035 (2013).CAS聽 Article聽Google Scholar聽 24.Jackson, S. Hardham, A. A transient rise in cytoplasmic free calcium is required to induce cytokinesis in zoosporangia of Phytophthora cinnamomi. Eur. J. Cell Biol. 69, 180鈥?88 (1996).CAS聽 PubMed聽Google Scholar聽 25.Li, D. et al. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS ONE 8, e58623. https://doi.org/10.1371/journal.pone.0058623 (2013).ADS聽 CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 26.Safdar, A. et al. An LRR receptor kinase regulates growth, development and pathogenesis in Phytophthora capsici. Microbiol. Res. 198, 8鈥?5. https://doi.org/10.1016/j.micres.2017.01.008 (2017).CAS聽 Article聽 PubMed聽Google Scholar聽 27.LaRonde, N. A. The ancient microbial RIO kinases. J. Biol. Chem. 289, 9488鈥?492. https://doi.org/10.1074/jbc.R113.538090 (2014).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 28.Angermayr, M., Roidl, A. Bandlow, W. Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol. Microbiol. 44, 309鈥?24 (2002).CAS聽 Article聽Google Scholar聽 29.Baumas, K. et al. Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biol. 9, 162鈥?74. https://doi.org/10.4161/rna.18810 (2014).CAS聽 Article聽Google Scholar聽 30.Shan, J. et al. RIOK3 interacts with caspase-10 and negatively regulates the NF-kappaB signaling pathway. Mol. Cell. Biochem. 332, 113鈥?20. https://doi.org/10.1007/s11010-009-0180-8 (2009).CAS聽 Article聽 PubMed聽Google Scholar聽 31.Baker, C. R., Hanson-Smith, V. Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104鈥?08. https://doi.org/10.1126/science.1240810 (2013).ADS聽 CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 32.Kiburu, I. N. LaRonde-LeBlanc, N. Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity. PLoS ONE 7, e37371. https://doi.org/10.1371/journal.pone.0037371 (2012).ADS聽 CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 33.Mielecki, M. et al. Development of novel molecular probes of the Rio1 atypical protein kinase. Biochem. Biophys. Acta 1292鈥?301, 2013. https://doi.org/10.1016/j.bbapap.2013.03.012 (1834).CAS聽 Article聽Google Scholar聽 34.Judelson, H. S. Roberts, S. Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1, 687鈥?95. https://doi.org/10.1128/ec.1.5.687-695.2002 (2002).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 35.Tojo, M., Matsuura, S., Takase, M. Radmer, L. E. Morphological and molecular identification of Pythium aphanidermatum causing root rot of tomato in a hydroponic substrate culture in the south western region of Japan. Ann. Rept. Kansai Pl. Prot. 55, 57鈥?8 (2013).Article聽Google Scholar聽 36.Miller, P. M. V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology 45, 461鈥?62 (1955). Google Scholar聽 37.Koohakan, P., Ikeda, H., Jaenaksorn, T., Tojo, M. Kusakari, S. Effects of inorganic elements on the in-vitro growth of Pythium aphanidermatum (Edson) Fitzp. Microbes Eviron. 17, 91鈥?7 (2002).Article聽Google Scholar聽 38.Takenaka, S. et al. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology 98, 187鈥?95 (2008).CAS聽 Article聽Google Scholar聽 39.Hayakawa, M. Nonomura, H. Humic acid-vitamin agar, a vew medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65, 501鈥?09 (1987).CAS聽 Article聽Google Scholar聽 40.Edwards, U., Rogall, R., Blocker, H., Emde, M. Bottger, C. E. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843鈥?853 (1989).CAS聽 Article聽Google Scholar聽 41.Ah-Fong, A. M., Kagda, M. Judelson, H. S. Illuminating Phytophthora biology with fluorescent protein tags. In: Ma, W., Wolpert (eds) Plant Pathogenic Fungi and Oomycetes. Methods Molecular Biology 1848, 119鈥?29 (2018).42.Judelson, H. S. Tani, S. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot. Cell 6, 1200鈥?209. https://doi.org/10.1128/EC.00311-06 (2007).CAS聽 Article聽 PubMed聽 PubMed Central聽Google Scholar聽 43.Tani, S., Yuki, S., Kunitake, E., Sumitani, J. Kawaguchi, T. Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus. Biosci. Biotechnol. Biochem. 81, 1227鈥?234. https://doi.org/10.1080/09168451.2017.1295800 (2017).CAS聽 Article聽 PubMed聽Google Scholar聽 44.Judelson, H. S. et al. Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol. Plant Microbe Interact. 21, 433鈥?47 (2008).CAS聽 Article聽Google Scholar聽 45.Hagiwara, D., Suzuki, S., Kamei, K., Gonoi, T. Kawamoto, S. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet. Biol. 73, 138鈥?49. https://doi.org/10.1016/j.fgb.2014.10.011 (2014).CAS聽 Article聽 PubMed聽Google Scholar聽 Download referencesAcknowledgementsThis research was funded by the Inamori Foundation (to S.T.) and the Institute for Fermentation, Osaka (to S.T.), and by the National Science Foundation of the United States to HSJ.Author informationAffiliationsGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, JapanShuji Tani,聽Naotaka Nishio,聽Kenji Kai,聽Yoshiyuki Ogata,聽Motoaki Tojo,聽Jun-ichi Sumitani聽 聽Takashi KawaguchiMedical Mycology Research Center, Chiba University, Chiba, JapanDaisuke HagiwaraFaculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, JapanDaisuke HagiwaraDepartment of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USAHoward S. JudelsonAuthorsShuji TaniView author publicationsYou can also search for this author in PubMed聽Google ScholarNaotaka NishioView author publicationsYou can also search for this author in PubMed聽Google ScholarKenji KaiView author publicationsYou can also search for this author in PubMed聽Google ScholarDaisuke HagiwaraView author publicationsYou can also search for this author in PubMed聽Google ScholarYoshiyuki OgataView author publicationsYou can also search for this author in PubMed聽Google ScholarMotoaki TojoView author publicationsYou can also search for this author in PubMed聽Google ScholarJun-ichi SumitaniView author publicationsYou can also search for this author in PubMed聽Google ScholarHoward S. JudelsonView author publicationsYou can also search for this author in PubMed聽Google ScholarTakashi KawaguchiView author publicationsYou can also search for this author in PubMed聽Google ScholarContributionsS.T. and T.K. conceived the project. N.N., K.K., H.S.J., and S.T. designed the project. S.T. and H.S.J. wrote the paper. N.N., D.H., Y.O., and S.T. conducted RNA-seq analysis. N.N., J.S., and M.T. conducted the Pythium experiment.Corresponding authorCorrespondence to Shuji Tani.Ethics declarations Competing interests The authors declare no competing interests. Additional informationPublisher\'s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary Information Supplementary Information.Rights and permissions Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article\'s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article\'s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and PermissionsAbout this articleCite this articleTani, S., Nishio, N., Kai, K. et al. Chemical genetic approach using 尾-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans. Sci Rep 10, 22326 (2020). https://doi.org/10.1038/s41598-020-79326-7Download citationReceived: 25 February 2020Accepted: 08 December 2020Published: 18 December 2020DOI: https://doi.org/10.1038/s41598-020-79326-7 CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Sign up for the Nature Briefing newsletter 鈥?what matters in science, free to your inbox daily.
本文链接: http://axonmedchem.immuno-online.com/view-66507.html
发布于 : 2025-04-26
阅读()
最新动态
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-01
1970-01-02
1970-01-02
1970-01-02
1970-01-02